Source: wshobson/agents Original Plugin: llm-application-dev
RAG Implementation
Master Retrieval-Augmented Generation (RAG) to build LLM applications that provide accurate, grounded responses using external knowledge sources.
When to Use This Skill
- Building Q&A systems over proprietary documents
- Creating chatbots with current, factual information
- Implementing semantic search with natural language queries
- Reducing hallucinations with grounded responses
- Enabling LLMs to access domain-specific knowledge
- Building documentation assistants
- Creating research tools with source citation
Core Components
1. Vector Databases
Purpose: Store and retrieve document embeddings efficiently
Options:
- Pinecone: Managed, scalable, fast queries
- Weaviate: Open-source, hybrid search
- Milvus: High performance, on-premise
- Chroma: Lightweight, easy to use
- Qdrant: Fast, filtered search
- FAISS: Meta's library, local deployment
2. Embeddings
Purpose: Convert text to numerical vectors for similarity search
Models:
- text-embedding-ada-002 (OpenAI): General purpose, 1536 dims
- all-MiniLM-L6-v2 (Sentence Transformers): Fast, lightweight
- e5-large-v2: High quality, multilingual
- Instructor: Task-specific instructions
- bge-large-en-v1.5: SOTA performance
3. Retrieval Strategies
Approaches:
- Dense Retrieval: Semantic similarity via embeddings
- Sparse Retrieval: Keyword matching (BM25, TF-IDF)
- Hybrid Search: Combine dense + sparse
- Multi-Query: Generate multiple query variations
- HyDE: Generate hypothetical documents
4. Reranking
Purpose: Improve retrieval quality by reordering results
Methods:
- Cross-Encoders: BERT-based reranking
- Cohere Rerank: API-based reranking
- Maximal Marginal Relevance (MMR): Diversity + relevance
- LLM-based: Use LLM to score relevance
Quick Start
PYTHON
from langchain.document_loaders import DirectoryLoader
from langchain.text_splitters import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
# 1. Load documents
loader = DirectoryLoader('./docs', glob="**/*.txt")
documents = loader.load()
# 2. Split into chunks
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=200,
    length_function=len
)
chunks = text_splitter.split_documents(documents)
# 3. Create embeddings and vector store
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(chunks, embeddings)
# 4. Create retrieval chain
qa_chain = RetrievalQA.from_chain_type(
    llm=OpenAI(),
    chain_type="stuff",
    retriever=vectorstore.as_retriever(search_kwargs={"k": 4}),
    return_source_documents=True
)
# 5. Query
result = qa_chain({"query": "What are the main features?"})
print(result['result'])
print(result['source_documents'])
Advanced RAG Patterns
Pattern 1: Hybrid Search
PYTHON
from langchain.retrievers import BM25Retriever, EnsembleRetriever
# Sparse retriever (BM25)
bm25_retriever = BM25Retriever.from_documents(chunks)
bm25_retriever.k = 5
# Dense retriever (embeddings)
embedding_retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
# Combine with weights
ensemble_retriever = EnsembleRetriever(
    retrievers=[bm25_retriever, embedding_retriever],
    weights=[0.3, 0.7]
)
Pattern 2: Multi-Query Retrieval
PYTHON
from langchain.retrievers.multi_query import MultiQueryRetriever
# Generate multiple query perspectives
retriever = MultiQueryRetriever.from_llm(
    retriever=vectorstore.as_retriever(),
    llm=OpenAI()
)
# Single query → multiple variations → combined results
results = retriever.get_relevant_documents("What is the main topic?")
Pattern 3: Contextual Compression
PYTHON
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor,
    base_retriever=vectorstore.as_retriever()
)
# Returns only relevant parts of documents
compressed_docs = compression_retriever.get_relevant_documents("query")
Pattern 4: Parent Document Retriever
PYTHON
from langchain.retrievers import ParentDocumentRetriever
from langchain.storage import InMemoryStore
# Store for parent documents
store = InMemoryStore()
# Small chunks for retrieval, large chunks for context
child_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000)
retriever = ParentDocumentRetriever(
    vectorstore=vectorstore,
    docstore=store,
    child_splitter=child_splitter,
    parent_splitter=parent_splitter
)
Document Chunking Strategies
Recursive Character Text Splitter
PYTHON
from langchain.text_splitters import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=200,
    length_function=len,
    separators=["\n\n", "\n", " ", ""]  # Try these in order
)
Token-Based Splitting
PYTHON
from langchain.text_splitters import TokenTextSplitter
splitter = TokenTextSplitter(
    chunk_size=512,
    chunk_overlap=50
)
Semantic Chunking
PYTHON
from langchain.text_splitters import SemanticChunker
splitter = SemanticChunker(
    embeddings=OpenAIEmbeddings(),
    breakpoint_threshold_type="percentile"
)
Markdown Header Splitter
PYTHON
from langchain.text_splitters import MarkdownHeaderTextSplitter
headers_to_split_on = [
    ("#", "Header 1"),
    ("##", "Header 2"),
    ("###", "Header 3"),
]
splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
Vector Store Configurations
Pinecone
PYTHON
import pinecone
from langchain.vectorstores import Pinecone
pinecone.init(api_key="your-api-key", environment="us-west1-gcp")
index = pinecone.Index("your-index-name")
vectorstore = Pinecone(index, embeddings.embed_query, "text")
Weaviate
PYTHON
import weaviate
from langchain.vectorstores import Weaviate
client = weaviate.Client("http://localhost:8080")
vectorstore = Weaviate(client, "Document", "content", embeddings)
Chroma (Local)
PYTHON
from langchain.vectorstores import Chroma
vectorstore = Chroma(
    collection_name="my_collection",
    embedding_function=embeddings,
    persist_directory="./chroma_db"
)
Retrieval Optimization
1. Metadata Filtering
PYTHON
# Add metadata during indexing
chunks_with_metadata = []
for i, chunk in enumerate(chunks):
    chunk.metadata = {
        "source": chunk.metadata.get("source"),
        "page": i,
        "category": determine_category(chunk.page_content)
    }
    chunks_with_metadata.append(chunk)
# Filter during retrieval
results = vectorstore.similarity_search(
    "query",
    filter={"category": "technical"},
    k=5
)
2. Maximal Marginal Relevance
PYTHON
# Balance relevance with diversity
results = vectorstore.max_marginal_relevance_search(
    "query",
    k=5,
    fetch_k=20,  # Fetch 20, return top 5 diverse
    lambda_mult=0.5  # 0=max diversity, 1=max relevance
)
3. Reranking with Cross-Encoder
PYTHON
from sentence_transformers import CrossEncoder
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# Get initial results
candidates = vectorstore.similarity_search("query", k=20)
# Rerank
pairs = [[query, doc.page_content] for doc in candidates]
scores = reranker.predict(pairs)
# Sort by score and take top k
reranked = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True)[:5]
Prompt Engineering for RAG
Contextual Prompt
PYTHON
prompt_template = """Use the following context to answer the question. If you cannot answer based on the context, say "I don't have enough information."
Context:
{context}
Question: {question}
Answer:"""
With Citations
PYTHON
prompt_template = """Answer the question based on the context below. Include citations using [1], [2], etc.
Context:
{context}
Question: {question}
Answer (with citations):"""
With Confidence
PYTHON
prompt_template = """Answer the question using the context. Provide a confidence score (0-100%) for your answer.
Context:
{context}
Question: {question}
Answer:
Confidence:"""
Evaluation Metrics
PYTHON
def evaluate_rag_system(qa_chain, test_cases):
    metrics = {
        'accuracy': [],
        'retrieval_quality': [],
        'groundedness': []
    }
    for test in test_cases:
        result = qa_chain({"query": test['question']})
        # Check if answer matches expected
        accuracy = calculate_accuracy(result['result'], test['expected'])
        metrics['accuracy'].append(accuracy)
        # Check if relevant docs were retrieved
        retrieval_quality = evaluate_retrieved_docs(
            result['source_documents'],
            test['relevant_docs']
        )
        metrics['retrieval_quality'].append(retrieval_quality)
        # Check if answer is grounded in context
        groundedness = check_groundedness(
            result['result'],
            result['source_documents']
        )
        metrics['groundedness'].append(groundedness)
    return {k: sum(v)/len(v) for k, v in metrics.items()}
Resources
- references/vector-databases.md: Detailed comparison of vector DBs
- references/embeddings.md: Embedding model selection guide
- references/retrieval-strategies.md: Advanced retrieval techniques
- references/reranking.md: Reranking methods and when to use them
- references/context-window.md: Managing context limits
- assets/vector-store-config.yaml: Configuration templates
- assets/retriever-pipeline.py: Complete RAG pipeline
- assets/embedding-models.md: Model comparison and benchmarks
Best Practices
- Chunk Size: Balance between context and specificity (500-1000 tokens)
- Overlap: Use 10-20% overlap to preserve context at boundaries
- Metadata: Include source, page, timestamp for filtering and debugging
- Hybrid Search: Combine semantic and keyword search for best results
- Reranking: Improve top results with cross-encoder
- Citations: Always return source documents for transparency
- Evaluation: Continuously test retrieval quality and answer accuracy
- Monitoring: Track retrieval metrics in production
Common Issues
- Poor Retrieval: Check embedding quality, chunk size, query formulation
- Irrelevant Results: Add metadata filtering, use hybrid search, rerank
- Missing Information: Ensure documents are properly indexed
- Slow Queries: Optimize vector store, use caching, reduce k
- Hallucinations: Improve grounding prompt, add verification step